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Abstract

A method for optimizing image-recovery algorithms is presented that is based on how well the specified
task of object localization can be performed using the reconstructed images. The task performance is
numerically assessed by a Monte Carlo simulation of the complete imaging process including the generation
of scenes appropriate to the desired application, subsequent data taking, image recovery, and performance
of the stated task based on the final image. This method is used to optimize the constrained Algebraic
Reconstruction Technique (ART), which reconstructs images from their projections under a nonnegativily
constrairt by means of an iterative updating procedure. The optimization is performed by finding the
the relaxation factor, which is employed in the updating procedure, that yields the minimum rms error in
estimating the position of discs in the reconstructed images. It is found that the optimum operating points
for the best object lacalization are essenti.lly the same as those obtained car'ier when the performance of
simple object detection is to be optimized.

Introduction

Previously we showed how the evaluaticn of image recovery algorithms could be based on how well the
resulting reconstructions allow one to perform the tasks set forth for the imaging system [11. A technique that
permits one to numerically evaluate a task performance index for a specified imaging situation was proposed.
This technique consists of a Monte Carlo simulation of the entire imaging process including random scene
generation, data taking, teconstruction, and task performance. Accuracy is judged by comparison of {he
results with the original scene. Repetition of this process for many possible scenes provides a statistically
significant estirnate of the performance index rhat has been chosen to summarize the accuracy of the task
performance. Averaging over many scenes is irmportant because artifacts in reconstructed images depend
on the scene being reconstructed. Thus a single realization of a simple scene is completely inadequate
to judge a reconstruction algorithm. The advantage of this numerical approach is that it readily handles
complex imaging situations, nonstationary imaging characteristics, and nonlinear reconstruction algorithms,
Its major disadvantage is that it provides an evaluation that is valid only for the specilic imaging situation
investigated. More detail about this method ean be found in 11,

An advantage of the Monte Carie method of performance evaluation is that the reconstruction . Igorithm
may be optimized for any fixed snumber of iverations. Alternatively, the number of iterations may be varied to
achieve the optimum performance for algerithms that tend to diverge after many iterations. Such behavior
is observed in the EM festimation maximization) algorithm {2,3° and, when data are inconsistent, some
implementations of the ART algorithm 1)

The above method to evaluate task performance hns been used 15 to optimize the tomographic recon
struction algorithm, constrained ART (Algebraic Reconstrucetion Technigue) {41] with respect to detectability,
The object of thet study was the relaxation factor, about which there is very little theoretical guidance. 'wo
parameters were used to control the behaviour of the relaxation factor as a function of iteration number. The
optitnum operating point was found by searching for the combinntion that yields the lnrgest detectability i
dex . ‘This optimization procedure demanded much higher relexation factors than sugpested by theory for
uncenstrained ART. In [1] we demonstrated that in certain imaging situations the use of the nonnegativity
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constraint in the reconstruction process improved d’ by almost a factor of three when nominal relaxation
factors were used. It was found that with optimization, d’ could be increased by another factor of ten.
The improvement in d' correlated well with visually estimated image quality. If the optimization of the
algorithin with respect to the common measure of reconstruction faithfulness, the rms ditference between
the reconstruction and the original scene, were followed, considerably poorer detectability and perceived
image quality resulted.

We report on an extension of the previous work to the cousideration of the performance of a higher
order task. namely estimation of object location. This extension is pertinent because the accuracy of object
localization depends on the higher spatial frequencies in the reconstruction, which are believed to dominate
the performance of other high-order tasks such as medical diagnosis 6.

Estimation of Object Position

The task of estimating the position of an object with known shape is performed using a minimum
chi-squared (\?) fitting procedure. It is known that this procedure is equivalent to maximum likelihood
estimation 7' when the noise is gaussian distributed and uncorrelated. For a set of measurements f,, \? is
given by

I (f- - p(a))?
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where p,(a) is the predicted value of the ith measurement for the parameter vectem a and o, is the rms
noise in the ith measurement. The sum is over all the measurements that are to be included in estimating
the unknown parameters. The best fit to the data is obtained by finding the set of parameters o that
minimizes x*. The fitting algorithm we have used is essentially 1dentical to the CHIFIT program presented
by Bevington 8 for fitting & nonlinear function of the parameters. For the task at hand, the estimation ¢f
the location of a known signal, the predicted function p, is nonlinearly related to the position.

Aigebraic Reconstruction Technique

The Algebraic Reconstruction Technigue (ART) 4 is an iterative algorithin that reconstructs a function
fromiits projections. It has proven to be a very successful tomographic reconstruction algorithm, particularly
when there is a limited number of projections available. Assume that ¥V projection measurements are made
of the unknown function f, which is considered a vector, The th measurement is writeen as

g M J, v 10N, (2)

where H, is the corresponding row of the measurement matrix. The ART algorithm procecds as follows,
An initial guess is made; for example, £ 0. Then the estimate is updated by iterating on the individoal
measurements taken in turn:

Hf*

kil k kgl |
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where f¥ is the kth estimate of the image vector £, 6 k mod(V) 1, and A% is 1 relaxation factor for the
kth update. In constrained ART a nonnegativity constraint is enforced by settivg any component of 401
to zero that has been made negative by the above updating procedure. We ose the index K to indicate the
iteraion number (K int(k/.V)), which in the standard nomenclature correspands to one pass Chrough all
N omeasurements. We express the relaxation factor ay

AL WS L i)

The proper choice of che relaxation Gactor is the issue at hand. There is very little pouidance on this choiee
in the Literature. A value of unity is often supgested and wsed. By koown 97 that af a0 unigue solution
to the measurement equations existy, the AR algorithim converges to i in the it of ancinfinite aumber



of iterations provided that 2 > A > . If man- solutions exist, ART converges to the one with minimum
norm. Censor et al. 10 have shown that unconstrained ART ultimately converges to a minin im-norm
least-squares solution if the relaxation factor approaches zero slowly enough. However, AK asvmptotically
approaches zero for any value of ry < 1. The value appropriate for a linite number of iterations remains
uncertain. In previous work the author has assumed for A, and r\ the nominal values of 1.0 and 0.8 for
problems involving a limited number of projections, and 0.2 and 0.8 for problems involving many (~100)
views 1. Next we discuss a way to find the best choice for the relaxation parameters for a specific problem.

Optimization of ART

Several classes of measures have been employed in the past on which to base the optimization of image
recovery algorithms 11. Some are based on how close the reconstructed images are to the original image,
such as the conventional measure of the rms difference between the reconstruction and the original image,
simply cailed the rms error. This figure of merit may be convenient from a mathematical standpoint, but it
does not correlate well with the usefulness of reconstructed images. There are alternative measuies based on
how closely the estimated reconstruction reproduces the measurement data, for example, the mean-square
residual. Unfortunately, without further constraints, reconstruction based on minimizing the mean-square
residual is known to be ill-conditioned or even worse, ill-posed ,11. We have proposed 5] that the most
meaningful measure upon which to vptimize reconstruction algorithms is the ability to perform the kind of
task for which the uimnaging system was intended. We will use the foilowing example to demonstrate how
this can be accomplished.

The nunerically calculated task performance can be used to search for the optimum choice of Ay and
ry for the ART algorithm. For the present purpose, the scene is assumed to consist of a number of non
overlapping discs placed on a zero background. For this example, each scene contains 10 high-contrast dises
of amplitude 1.0 and 10 low-contrast discs with amplitude 0.1. The discs are randomly placed within a circle
«[reconstruction, which has a diameter of 128 pixels ir the reconstructed image. The diameter of cach dise
is 8 pixels. In this computed tomographic (CT) problemn, the measurements are assumed to consist of a
specilied number of parallel projections, each containing 128 samples. Ten iterations of ART are used in all
of the present examples. It is assumed that the task to be performed is the estimation of the positions of
the dises. To produce noisy data, random noise is added to the projection measurements using a Gaussian-
distributed random number generator. For a display of the kinds of scenes use:d in this study, please refer
to ! 1,51

As mentioned above, estimation of the position the dises is performed using a minimum y? lirting
technique. For the input measurements to the fitting procedure, we use the set of pixels in the reconstructed
image f that fall inside a civele with a radius 1.7 times the radius of the dise whose position is to be
determined, "This circular fitting region is centered on the position of the dise being fit. The function titeed
to the data is a dise of variable amplitude with a linearly tapered edge, which is chosen to approximately
match the shape of the reconstructed dises. The background is assumed to be zero. In the fity performed
here, the radiug and taper of the dises are held constant and the amplitude and the horizontal and vertical
position of cach dise are allowerd to vary. The rins noise in the measurements o, is assumed 1o be constant,
For the soformance index, we use the rms error in the estimated position of the dises, averaged over hoth
horizontal and vertical positions of all the dises of the same amplitude in all ten reconstructions. We refer
to this performance index as localizability and designate it as oy, An inlierent problem arises when the
presence of a dise is nncertain, In the present atudy when the fitted amplitude is less than 20% of the carrect
value, we assutne the dise 13 nod reliably detected and simply replace the estimated position with a randomly
peaera ed position located within the range of the data being fitted. However, such o strategy can lead to
a lack of continuity in the optimizing function, which can easily play havoe with any routine that s to find
the mininun of such a function,

Fig, 1 shows how varions choices for optimization functions depend an Ay and ey for constrained AR
inone data taking situation. he contours for oy obtained by itting the high contrast dises are remarkably
sitnilar ta those obtained by fitting the low contrast dises 1o Fact, these two aptimization fundtion, are
almost exactly an even Tuctor of ten aparct; that is,in the same ratio as theie amplitudes. Phus it doean’



I x a3y (AMPLITUDE = 0.1)

.\_u
.IL".- By
N ]
- s,
r\ . ey ..l r,
b4
g i
' " Yy
) f ] K
’_.
4_4
v,
[CRV - )
2 N .--\\- ' o v ) -..'-l o -'_'-.'"- ) -1-()- ' ol '1-.' )
a\.| AII
oo 1on - RMS DIFF(RECON. - ORIGINAL)
. . L . . . ..
S
[LIY AL 1oty .
a
“or
e O] -
h g
r, - . ", 4,_‘,
Y 1 "
¢
*/
b e . o
6. s
LTS
e )
AN . oh (N} v vy ' " (Y 4
.\.| -\ll

Figure 1: Contour plots of four optimization functions plotted as a fun-~tion of the relaxation parameters Ay
and ry used in e constrained ART reconstruction algorithm, ‘The measurement data consist of 12 noiseless,
parallel projections spanning 180°, The conrse sampling (10 x 10 points) of these functions, necessitated by
the lengthy computation time reqaired for each function evaluation, accounts for the scalloping effects.



matter which set of objects is used for position estimation. This fact is important because in some situations
the low-contrast discs are difFcult 1o detect, giving rise to the problem described above of knowing how to
score such cases. Furthermore, these contours are quite similar to those for the optimization funciion based
on the detectability index, i. e. 100.d’. Thus optimization with respect to any of these performance indices
vields the same operating point. Recall, however, the previous demionstration ‘5, that optimization based on
the rms error in the reconstruction resulted in more artifacts than optimization based on the detectability
index d’.

Figures 2 and 3 compare the optimization function based on localizablity to that based un detectability
for two other data-taking situations in which random nuise is added to the projection data. In these cases
the contours of the two optimization functicas are not nearly as identical in shape as they are in Fig. 1, but
they do show the same general trends. In Fig. 3 both 1/d’ and o5 show little dependence on Ay and similar
dependences on 7y, but with different positions of the minima. In Fig. 2 the two functions have nearly the
same minima but demonstrate somewhat different characteristics in their dependence on the two variables.

The optimum values for Ay and ry are found for various conditions of data collection using a function
minimizer from the NAG library?! called E04JBE. This routine finds the minimum of a function of many
parameters after numerous evaluations of the function. From 20 to 100 function evaluations are required
for the cases studied here in which just two parameters are varied. Table 1 tabulates the results obtained
previously with constrained ART for optimization with respect to the detectability of the low-contrast
discs. The nonnerativity constraint was found to be generally useful with the nominal relaxation factors,
particularly when 1he data are limited by the measurement geometry. Optimization produced even further
improvements in dctectability. Very large relaxation factors are preferred, in fact much larger than might
be expected. However, when it is rcalized that the nonnegativity constraint has the effect of undoing the
agreement with cach measurement that should result from an update, it seems reasonable that overrelaxation
is desirable. Neither the use of nonnegativity nor optimization has much benefit when the data are complete
but noisy.

The results of optimizing constrained ART with respect to the accuracy of position estimation are
presented in Table 2. As a general observation, optimization with respect to localizability yiclds very similar
operating points for A¢ and ry. FPurthermore, the factors by which improvement is made in the .:ptimization
function by moving from the nominal relaxation parameters to the optimized ones is nearly the same for
cach data taking situation. It appears that the effect of artifacts on 1/d’ and o4 are similar. Perhaps this
fact is a consequence of the randomization produced in the artifacts arising from the randomized placement
of the discs in the many scenies that are used to calculate the average performance index. Then the effects
of artifacts might be expected to behave similarly to those of additive random noise in the measurements.

The conclusions regarding the optimization with respect to localizability in unconstruined ART recon-
structions are essentially the same as those previously drawn about detectability. Relatively little improve:
ment in localizability is achieved by optimization compared to that obtained with the nominal relaxation
factors, In the noiseless cases, a value of unity for AKX yicelds essentially the same results as the optimized
vitlues. a choice that is in agreement with common practice. However, for noisy data it seews desirable for
ra to be less than unity and, when there are mmany views, Ay should be small. These choices are reasonable
as they promote significant averaging over all the views. As a rule of thumb, for noisy but complete data,
the relaxation factor should be npproximately equal to the reciprocal of the number of views for the last few
iterations,

vumerical Algorithim Group, 7 Banbury itoad, Oxford OX2 6NN, UK
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Figure 2: Contour plots (btained with constrained ART for measurement data consisting of 100 parallel
projections spanning 180° containing random noise with an rms amplitude of 8.
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Figure 3: Contour plots obtained with constrained ART for measurement data consisting of 16 parallel
projections spanning 180" containing random noise with an rms amplitude of 2,



Table 1: Summary of the effect of optimization with respect to the detectability index d’ of the low-constrast
discs in reconstructions provided by constrained ART (repeated from Ref. [1]). Dramatic improvement in

detectability is seen to be possible when the measurement geometry limits inlerpretation of the reconstruction
rather than noise in the data.

( number | A#f rms nominal optimized

i proj. (deg.) | noise | Ag 7y d’ Ao T d’
| 100 180 | 802 0.8 1.825]0.052 0.859 1.908
1 8 180 0| (0 08 0653|345 0959 4.91
" 180 0!1.0 0.8 2054|296 0975 23.46
\ is 90 0/ 1.0 0.8 2050278 0967 6.30
16| 180 210 08 2372 3.0l 0712 2747

Table 2: Summary of the effect of optimization with respect to the localizability of the high-constrast discs
in reconstructions obtained with constrained ART. The object localizability o, is given in Lerms of pixels.

number | Af rms nominal optimized
proj. (deg.) | noise | Ag T oA Au T oa
100 | 180 802 08 0.182]0.046 0.920 0.174
8 | 180 0 1.0 08 0472 ]3.2¢ 0977 0.104
12| 180 0|10 08 0.236|2.80 0989 0.0277
16 90 0]1.0 08 0426]241 0998 0.149
16| 130] 210 08 0.160]2.93 0811 0.130 |

Discussion

In many of the imaging situations studied, the optimization of constrained ART realized through a judi-
cious selection of the relaxation factor can significantly increase the localizability of objccts, especially when
the data consist of a limited number of noiseless projections. l'or unconstrained ART, little improvement
can be achieved tlLrough optimization.

The accuracy of object localization for constrained and unconstrained ART, with and without optimiza-
tion, follows the same pattern found earlier for detectability. The optimization functious for the performance
of the tasks of position estimation and detection of low-contrast ovjects show similar vrends as a function
of the two relaxation parameters Ag and r,. The optimum operating points in terms of these paramecters
vary with the data-taking situation but they are nearly the same for both of these tasks. This conclusion is
perhaps a little surprising because the task of object localization is mere dependent on the high-frequency
content of the image than is simple detection [6]. If the parameters Leing varied in the optimization had
separate effects on the modulation transfer function (MTF) and the correlation of the noise in the final
images, a diflerent result might have been anticipated. Part of Lthe explanation for the obscrved similarity
in the results is that, in the present case of image reconstruction, the resolution of the final images is not
aflected much by the relaxation factors. On the other hand, the realization in the reconstruction of randorm
noise present in the projection meesurements can be affected. Thus it is in the sitnations in which noise
is added to he measurements that we observe some differences in the optimization functions based on the
performance of these two tasks.
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It is possible that one may desire to optimize an imaging system with respect to the performance of
more than one task and that the individual optimization functions might not have the same minima. This
type of behavior is seen, for example, in Fig. 3. In such a case one can combine the various optimization
functions into a siugle grand optimization function by weighting eacu individual function appropriately. The
optimum operating point would strike a balance between the operating points that are best {or each of the
constituent tasks.
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